The XLB-650 Xenon lamp ballast is a very compact power supply designed for OEM applications. The maximum output power is 650W and the unit can operate on line voltages between 100VAC to 240VAC. The XLB-650 is ideal for high power applications where economy is important and performance cannot be compromised.

Compact size is possible due to a low-loss Zero Voltage Switching inverter and incorporation of planar magnetics. Power factor is greater than 0.98 and conducted emissions meet stringent European regulations. No additional external line filter is required to meet EN 60601-1-2 emission requirements. Lumina Power’s XLB series sets the standard for reliable lamp ignition and long term high power operation in a low cost, compact package. The XLB-650 is ideal for medical, projection and industrial applications where a stable light source is essential.

As a Xenon lamp ballast, the XLB-650 power supply first ignites the lamp with a high voltage pulse and, once the lamp is ignited, acts as a programmable current source delivering constant current based on the input program signal, I_{program}(+), which is normally 0-10V. The XLB-650 can be configured for output current up to 35A and operate with typical lamp voltages between 15 and 35V.

The XLB-650 utilizes a proprietary low loss, high frequency power factor correction circuit which maintains a power factor above 0.98. Power factor corrected power supplies use up to 30% less input current and meet stringent IEC harmonic requirements. The output inverter is a state-of-the-art zero voltage switching (ZVS) inverter which permits very high frequency power conversion with minimum losses and electromagnetic noise.
Table of Contents

Theory of Operation 3
Explanation of Symbols 2
XLB-650 Specifications 5
XLB-650 Interface 6
Installation and Operation 9

Tables and Figures

XLB-650 Block Diagram Figure 1 4
XLB-650 Interface Table 1 6
XLB-650 Chassis Outline Drawing Figure 2 7
XLB-650 Input Connections Figure 3 8
XLB-650 Output Connections Figure 4 8
XLB-650 Lamp Connections Figure 5 10
XLB-650 AC Input Requirements Table 2 12

Explanation of Symbols

Hazard: This equipment produces high voltages which can be fatal. Only service personnel of Lumina Power, Inc. are qualified to service this equipment.

High Voltage Present: This power supply produces lethal high voltages. Only service personnel of Lumina Power, Inc. are qualified to service this equipment. Only qualified service personnel are permitted to install this power supply.
XLB-650 Theory of Operation
(Refer to Figure 1)

The XLB-650 Xenon lamp ballast has been designed to drive high power Xenon lamps. OEM power supplies for Xenon lamps have the following requirements:

- Safe lamp operation
- Reliable short pulse lamp ignition
- Compact size
- Power factor correction to conform with CE requirements
- Low conducted electromagnetic emissions
- Low leakage for medical applications

Referring to the Figure 1, XLB-650 BLOCK DIAGRAM, the following is a brief description of operation.

**AC Input Power Circuitry**
AC input power is processed through a line filter to reduce the conducted EMI to an acceptable level. The XLB-650 line filter has minimum capacitance to ground to minimize leakage currents.

**Power Factor Correction Boost Inverter**
The rectified input power is next applied to a power factor boost inverter. This inverter boosts the input voltage to 400VDC. In the process of boosting the rectified input voltage, the input AC current is adjusted so that it is always in phase with the input AC voltage. Without this power factor correction circuit, the AC input current would be delivered to the power supply in high amplitude, narrow spikes, having a high harmonic content. With power factor correction, the non-50/60 Hz harmonics are reduced to near zero. Since only the fundamental frequency is now used to deliver power, the efficiency of the power supply is improved considerably.

One problem with standard input power factor correction circuits is that a high frequency switching circuit is placed across the line in the input side of the traditional capacitor filter capacitor. This circuit results in substantial switching noise conducted to the line. Lumina Power employs a proprietary soft-switching boost inverter which produces minimum switching noise, reduces switching losses, and results in a smaller heat sink associated with the power factor circuit.

**Zero Voltage Switching (ZVS) Inverter**
The ZVS inverter and the output transformer are used to step the 400VDC bus down to the appropriate output value. The ZVS inverter is the most modern high frequency, low loss, low noise topology utilized in power electronics today. Instead of running the inverter in a traditional PWM mode, the inverter is run in a phase shift mode. With the appropriate output inductor and capacitance across each switching device - in this case MOSFETS - there are virtually no switching losses in the inverter. The only losses in the devices are $I^2R$ losses associated with the Drain/Source resistance of the
MOSFETS. Therefore, the ZVS inverter also contributes to reduced losses, reduce EMI noise and a reduction in overall system heat sink requirements.

**Output Circuit**

The output filter is a single stage RC filter designed to minimize output ripple and noise.

**Control Circuit**

The control circuit handles all the responsibilities associated with safe operation of the Xenon lamp. Reliable lamp ignition as well as tight current regulation, overvoltage and over power protection are controlled and monitored in the control circuit.

**Auxiliary Power**

All internal power supply requirements as well as the external +15V power supply and are derived from the power factor control boost inductor. All auxiliary power supplies are regulated by standard linear regulators.

**Lamp Igniter Module**

The igniter module provides the 40kV pulse required to break down the Xenon gas and facilitate ignition. In standard configurations, the pulse is applied through the positive output to the lamp anode. Power to the module is provided by the main power supply chassis. Internal circuitry in the igniter module senses the presence of the high voltage arc and briefly disables operation in the main power supply chassis in order to minimize damage from high voltage noise.

![Figure 1, XLB-650 BLOCK DIAGRAM](image-url)
XLB-650-XX-YY SPECIFICATIONS

XX = I_{\text{out}}^{\text{max}}  YY= V_{\text{out}}^{\text{max}}

<table>
<thead>
<tr>
<th>Model</th>
<th>P_{\text{out}}^{\text{max}}</th>
<th>I_{\text{out}}^{\text{max}}</th>
<th>Input Voltage</th>
<th>Size (L x W x H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLB-650-XX-YY</td>
<td>650W</td>
<td>35A</td>
<td>100-240VAC</td>
<td>8.9” x 5.8” x 2.7”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>226 x 147 x 69 mm</td>
</tr>
</tbody>
</table>

Maximum available output voltage = 35V

Auxiliary Outputs: +15V @0.20A

**Input**
Voltage: 100 to 240VAC ±10% 50/60Hz  
Current: 4A at 220VAC  
Power Factor: >.98

**Interface**
(See interface description page 6)  
Connector: 15 Pin “D” Sub Female

**Ignition/Boost**
Boost Voltage: 170V  
Boost Energy: 500 mJ  
Ignition Voltage: Up to 40kV (~1uSec rise time)  
Igniter Polarity: Positive or Negative (Factory Set per customer request)  
Ignition Energy: 65mj.  
Igniter Dimensions: 5.5” x 3.6” x 2.6”  
140 x 92 x 66 mm

**Performance**
Line Regulation: <0.2% of maximum output current  
Current Regulation: <0.5% of Maximum output current  
Current Ripple: <0.5% of maximum output current  
Power Limit: Limited to 105% of maximum power with power fold-back circuit

**Environment**
Operating Temp: 0 to 40 °C  
Storage: -20 to 85 °C  
Humidity: 0 to 95% non-condensing  
Cooling: Forced air

**Regulatory**
Leakage Current: <350uA

**Approvals:**
Emissions/Immunity: EN 60601-1-2 3rd Edition
# XLB-650-XX-YY Interface

## TABLE 1: XLB-650 Interface

Connector Type: 15 pin D-sub Female

<table>
<thead>
<tr>
<th>Pin #</th>
<th>XLB-650 Pin Name</th>
<th>Functional Voltage Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Lamp On/ Off</strong> (input)</td>
<td>High=RUN=+5V to +15V Low = OFF = 0V</td>
<td>The <strong>Lamp On/ Off</strong> function is the control function which turns the lamp on and off. When the lamp is turned on, a trigger and boost sequence will ignite the lamp and deliver current as programmed via <strong>I_{program}</strong>, Pin 7.</td>
</tr>
<tr>
<td>2</td>
<td>No connection Do not connect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><strong>Interlock</strong> (input)</td>
<td>Open = OFF Connect to GND = RUN</td>
<td>The <strong>Interlock</strong> function can be connected to external interlock switches such as door or overtemp switches.</td>
</tr>
<tr>
<td>4, 9, 15</td>
<td><strong>GND</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><strong>Vout Monitor</strong> (output)</td>
<td>0 – 10V = 0 – V_{out_{max}}</td>
<td>The output voltage of the supply can be monitored by <strong>Vout Monitor</strong>.</td>
</tr>
<tr>
<td>6</td>
<td><strong>Iout Monitor</strong> (output)</td>
<td>0 – 10V = 0 – I_{out_{max}}</td>
<td>The output current of the supply can be monitored by <strong>Iout Monitor</strong>.</td>
</tr>
<tr>
<td>7</td>
<td><strong>I_{program}(+)</strong> (input)</td>
<td>2-10V = 20% to 100% of I_{out_{max}}</td>
<td>The power supply output current is set by applying a 2-10V analog signal to <strong>I_{program}(+)</strong>. Note that even with <strong>I_{program}(+)</strong> set between 0V and 2V, when the lamp is turned on via <strong>Lamp On/ Off</strong>, the XLB-650 will deliver 20% of the maximum current rating of the unit. This is the minimum current required to keep the lamp on. To deliver more than 20% of the maximum rated current, <strong>I_{program}(+)</strong> must be set higher than 2V.</td>
</tr>
<tr>
<td>8</td>
<td><strong>Lamp On/ Off Status</strong> (output)</td>
<td>High = Lamp Off = 15V Low = Lamp On = 0V</td>
<td>The lamp status is monitored and if at least 20% of the rated current of the power supply is flowing through the lamp, the <strong>Lamp On/ Off Status</strong> signal will be pulled low. When the lamp is off, this pin is pulled high to 15V through a 10K resistor.</td>
</tr>
<tr>
<td>10, 11, 12</td>
<td>No connection Do not connect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13, 14</td>
<td><strong>+15V @0.25A</strong> (output)</td>
<td></td>
<td>Auxiliary +15V power supply for user. Up to 0.20A output current available.</td>
</tr>
</tbody>
</table>
Figure 2, XLB-250 Outline

Note, all dimensions are in inches.
Figure 3, XLB-250 Input Connections and Outline

Figure 4, XLB-250 Output Connections and Outline
Installation and Operation of XLB-650

The XLB-650 chassis is mounted using the mounting brackets as shown in Figure 2, the XLB-650 Outline Drawing. The XLB-650 Igniter module has a mounting plate shown in Figure 3.

IMPORTANT HIGH VOLTAGE INSTALLATION NOTE

- The XLB-650 system trigger module produces a 40kV pulse during lamp ignition. The igniter module should be placed as close as possible to the Xenon lamp in order to keep the leads between the igniter and the Xenon lamp as short as possible. No other wires should be in the vicinity of the igniter output wires connecting to the Xenon lamp. The HV pulse produces transients that can be destructive to low signal electronics.
- Please refer to Figure 5, XLB-650 Igniter Outline Drawing, for information regarding required clearances around the high voltage igniter coil.

SAFETY WARNING

Because XLB-650 units are designed for OEM applications, the user must connect AC input power to the power supply chassis. Any input AC voltage must be considered extremely dangerous, and as such, care must be taken to connect AC input power to the unit.
Figure 5, XLB-650 Lamp Connections

Note: Negative ignition is available
1. **CONNECTING TO Xenon Lamp**  
   Figure 5 shows the interconnections between the XLB-650, the Igniter module and the Xenon lamp. Because the Igniter module produces a fast 40KV pulse when igniting the Xenon lamp, it is important to keep connections between the igniter module and the lamp as short as possible to avoid $I^2R$ losses in the wire. *Wire length of 30 cm or less is recommended for reliable ignition!*

2. **TR Trigger Sense Connection:** Connect the TR trigger sense connection wire to the trigger module and the XLB-650 main power supply chassis. The cable for this connection has been provided. The location of the connections is shown in Figure 5. Note: unit will not operate if not connected.

### IMPORTANT NOTE
Make sure when connecting the interface that the current program setting, $I_{program}(+)$, is set no higher than the value required for Xenon lamp operation. When AC power is applied and system is enabled via **Lamp On/Off**, output current will rise to this program value.

3. **INTERFACE CONNECTION** Connect user system to Interface 15 pin D-sub connector shown in Figure 3. (Although the user interface is typically designed by the user, Lumina Power can provide assistance necessary to modify interface program and monitor levels) See Table 1 for description of XLB-650 Interface and the associated simplified interface schematic.

4. **INTERFACE INFORMATION BEFORE APPLYING AC POWER:** The unit may be programmed for output current via Pin 7, the $I_{program}$ function. But there are three interface control signals which must be properly set before the output will deliver current as programmed by $I_{program}$.
   a. **Interlock:** Pin 3, the **Interlock**, must be grounded via Pins 4, 9 or 15 in order for the output to deliver current. Users typically wire system interlock switches in series with this interlock connection.
   b. **Lamp On/Off:** Pin 1, the **Lamp On/Off** signal is a 5V to 15V signal used to turn the output section on.
   c. **$I_{program}$:** Pin 7. A 0-10V signal results in output current as shown in the table below. Note that even with $I_{program}(+)$ set between 0V and 2V, when the lamp is turned on via **Lamp On/Off** the XLB-650 will deliver 20% of the maximum current rating of the unit. This is the minimum current required to keep the lamp on. To deliver more than 20% of the maximum rated current, $I_{program}(+)$ must be set higher than 2V.

<table>
<thead>
<tr>
<th>$I_{program}(+)$</th>
<th>$I_{out}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0V</td>
<td>20% $I_{out_{max}}$</td>
</tr>
<tr>
<td>2V</td>
<td>20% $I_{out_{max}}$</td>
</tr>
<tr>
<td>4V</td>
<td>40% $I_{out_{max}}$</td>
</tr>
<tr>
<td>6V</td>
<td>60% $I_{out_{max}}$</td>
</tr>
<tr>
<td>8V</td>
<td>80% $I_{out_{max}}$</td>
</tr>
<tr>
<td>10V</td>
<td>100% $I_{out_{max}}$</td>
</tr>
</tbody>
</table>
5. Operating the XLB
   a. **AC INPUT POWER CONNECTION**  Input power is as shown below in Table 2. Connect AC power connections to power supply input power terminals. Refer to Figure 3 for location of AC Input.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>INPUT POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLB-650-XX-YY</td>
<td>100-240VAC, 50/60 Hz, 4A @220VAC</td>
</tr>
</tbody>
</table>

   **IMPORTANT SYSTEM NOTE ON AC INPUT POWER**
   XLB-650 units are fused on both input lines. It does not matter which of the two AC inputs are designated Line or Neutral.

   **IMPORTANT APPLICATON NOTE REGARDING AC INPUT POWER**
   AC Input wires and Earth Ground wire should be at least #12 AWG, rated for at least 300V and 105 °C.

   b. **INTERFACE SETTINGS:** Make sure **Interlock**, Pin 3, is connected to Interface GND via Interface pins 4, 9 or 15
   c. **APPLY INPUT AC POWER**  Turn ON AC power. After a few seconds the power supply fans will begin to run.
   d. **PROGRAMMING OUTPUT CURRENT**  Program XLB-650 power supply for desired output current. A 2-10V signal applied to **Iprogram**, Pin 7, will program the XLB-650 for 20% to maximum rated output current.
   e. **Lamp On/Off**: Apply +5V to +15V to **Lamp On/Off**, Pin 1. The lamp will ignite. After ignition, XLB-650 will deliver output current as programmed.

6. Monitoring XLB output and performance:
   a. **Current Monitor**  Power supply output current can be monitored via pin 6, **Iout Monitor**. A 0-10V signal will represent the output current from 0 to maximum rated output current.
   b. **Voltage Monitor**  Power supply output voltage can be monitored via pin 5, **Vout Monitor**. A 0-10V signal will represent the output voltage from 0- maximum rated output voltage.
   c. **Lamp On/Off Status**. Once the lamp has successfully ignited and at least 20% of the maximum rated current of the power supply is being delivered to the lamp, the **Lamp On/Off Status** signal will go low.
7. **DC output connections:**

   **IMPORTANT APPLICATION NOTE REGARDING DC OUTPUT CONNECTIONS**

   DC Output can be as high as 35 amps! We recommend the user refer to the NEC for wire gauge guidelines for steady state and peak current condition operation.

8. **Servicing the XLB-650**

   XLB-650 units have no serviceable parts. Do not attempt to repair or service this unit in the field. Removing tamper seals from chassis will void warranty. For further information, contact Lumina Power at 978-241-8260.

---

26 Ward Hill Dr., Bradford, MA 01835
Ph: 978-241-8260  Fx: 978-241-8262
[www.luminapower.com](http://www.luminapower.com)
sales@luminapower.com

Your distributor:

[Schulz Electronic](http://www.schulz-electronic.de)