Linear Post-Processor Unit TC.LIN

for Regatron Power Supplies

Linear Post-Processor Unit TC.LIN

Features

- The Linear Post-Processor Unit combines the advantages of a primary switched power supply like high efficiency, small outline, leight weight, cost efficiency, with the fast, smoth linear controlled output capability of a linear power supply.
- To be used in combination with TopCon power supplies.
- Modular concept for easy power increase: Parallel, master-slave-operation of power supplies and Linear Post-Processor Units.
- Very fast digital controller features quick response time, enhanced dynamics and programmable control characteristics for a fast regulation arround the MPP of a IV-curve.
- User-friendly PC program available. This enables the user to communicate over the power supply to the Linear Post-Processor Unit.¹⁾
- Seamless integration into the well established TopControl software.
- Swiss made: developed, manufactured and tested in Switzerland by Regatron AG.

System Configuration (single Modules)

50 A / 25 A / 1500 VDC

TC.LIN.75.1500.50

Input requirements and output specifications
Mains input data (Auxiliary Supply)
Voltage189 – 253 V _{AC}
Frequency 48 – 62 Hz
Input power 50 W
DC Input ratings
Input voltage0 – 1500 V _{DO}
Input current
Leakage current DC to PE< 10 mA
Output ratings
Output voltage range 0 – 1500 V _{DC} 2
Drop Voltage (typical)50 V
Output current full range0 – 50 A ¬
Output current half range 0 – 25 A
Output Capacitor< 100 nF
Dissipation Power
Continous power diss2000 W 5
Power diss. < 3 Min 2500 W ⁶
Transient power dissFull SOA protection
Operating modes ^{15),16)}
AAP ⁷⁾ current regulation0 – 100 % I _{max}
$@0 - (V_{max} - V_{Drop})$
Resolution
Voltage, current resolution 14.5 Bit ⁸
Static accuracy
Load regulation< ± 0.05 % FS typ.
Line regulation< ± 0.05% FS typ. 10
Transient response time
Load regulation < 10 µs ¹¹ Set value tracking < 50 µs ¹²
Stability 13
$< \pm 0.02$ % FS ¹³
Temperature coefficient
Current, voltage < 0.01 % FS/°C ¹⁴
Remote sensing
Terminals on rear side cable voltage drop
compensation
One and an additional
General specifications
Weight21 kg Width front panel483 mm
Width housing444 mm (19"
Height front panel132 mm
Height housing132 mm (3 U
Depth with PACOB515 mm
Depth housing452 mm
DC input connections max.:
(DC+, DC-, PE)

DC Output connections max.: 16 mm²

Remote Sensing connections max. 0.8 mm²

(DC+, DC-, PE)

(DC+,DC-)

Ambient conditions	
Operating temperature	5 – 35 °C
Storage temperature	25 – 70 °C
Relative air humidity	
max. output cabling length: .	(non-condensing)
max. output cabling length: .	10 m ¹⁷⁾

Cooling

Integrated liquid cooling system of the power stage with completely integrated liquid to liquid heat-exchange system.

Heat exchanger

EN AW-5083
G ½"
15 - 40 °C
≥ 2.5 l/min
≤ 10 bar
.50 mbar@3 l/min

Safety

Type of protection (IEC 60529)

Basic construction	IP 20
Mounted in cabinet	up to IP 53
Isolation	
Line to output	4000 V _{rms}

Conformity CE-Marking

EMC Directive

<u>-</u>	
Low Voltage Directive	
EMC immunity	EN 61000-6-2
EMC emission	EN 61000-6-4

Electronic equipment

for use in power installations EN 50178

Standard programming interfaces

Control port

Control port	
Isolation to electronics and	d earth: 125 V _{rms}
Connector	15 pin D-sub, female
	on rear panel
Control port	

Control port

Standard programming interfaces (continued)

RS232

Isolation to electronics and e	earth: 125 V _{rms}
Connector	9 pin D-sub, female
	on rear panel
Baud rate	38400 baud
Resolution (programming ar	nd readback):
U, I	0.005 % FS
0.1.1	

Ordering code

TC.LIN.75.1500.50

Scope of delivery

TopCon Linear Post-Processor Unit ready to install, including:

Operating manual language	english
RS232 cable length	1.8 m
CAN bus	
	CANTerm Connector

Software	
TopControl	on Installation disc
API (DLL file)	for LabVIEW® and C/C++
	(and other programming languages,
	to be used incombination
	with TopCon Power Supplies.)

- 1) Most commonly used parameter are accessible via PC Program TopControl connected to TopCon power supply.
- 2) Maximum Output Voltage = Input Voltage Drop Voltage.
- 3) AdjThe wiring has to be as low-inductive as possible. Dimensioning assistance or/and longer cabling length up on request. ustable Value, the Drop Voltage influences directly the power dissipation.
- 4) Full Range / Half Range are selectable by PC program TopControl.
- 5) At ambient temperature 25 °C, for *current half range* 60 % of specified value. To reach this current a slightly higher input current of the power supply is needed.
- 6) For Drop Voltage $< 250 \text{ V}_{DC}$, for *current half range* 50 % of specified value.
- 7) Application Area Programming, e.g. I(U) curves of solar panel / solar array.
- 8) Improved by using oversampling technics.
- 9) Typical value for 60 % to 70 % load variation, at voltage drop and temperature conditions.
- 10) Typical value for variation within 20 V to 60 V drop voltage, at constant load and temperature conditions.
- Typical recovery time to within < ± 2 % band of set value for a load step 60 % to 70 %, ohmic load, voltage drop > 30 V and constant temperature conditions.
- Typical recovery time to within < ± 2 % band of set value for a set value step 60 % to 70 %, ohmic load, voltage drop > 30 V and constant temperature conditions. line input and temperature conditions. Transient response time can be slightly affected by multi-unit operation.
- 13) Maximum drift over 6 hours after 30 minute warm-up time, at constant line input, load and temperature conditions.
- 14) Typical change of output values versus ambient temperature, at constant line input and load conditions.
- 15) Fast steps from Uoc to Isc, Isc to Uoc, MPP to Isc or MPP to Uoc due to the SOA protection not for all IV-curves possible.
- 16) TC.LIN has to be controlled with a IV-curve. IV-curves can be generated with the AAP function of the TopControl function engine TFE or with the solar array simulation software SASControl.
- 17) The wiring has to be as low-inductive as possible. Dimensioning assistance or/and longer cabling length up on request.