

Vissersdijk 4, 4301 ND Zierikzee, the Netherlands

SM1500 - Power Sink Option

2 Quadrant operation: Source and Sink

SM52-AR-60

The Power Sink Option permits the power supply to absorb
oursts of power fed back to the unit. An internal module senses
he status of power supply and sinks current across the output
erminals, thus maintaining a constant output voltage.

The Power Sink Option allows a faster response when the power supply is step programmed to a lower voltage at low load conditions.

- Can absorb up to 200 W peak power
- Maintains output voltage setting regardless output power is positive or negative (source and sink)
- Ideal solution for supplying electric motors with PWM-speed control. These systems often return power to the power supply during a braking action
- Ideal solution for ATE systems requiring fast down programming at no load conditions
- Generation Automotive waveforms (fast)

SM35-45 **with** Power Sink Option Current –20 A means the load delivers 20 A to the power supply (sink operation)

Upper trace: output voltage Lower trace: output current (current switching from +20 A to –20 A at Vo=6 V)

Models	Order-Code
SM 15-100	Option P202
SM 35-45	Option P203
SM 52-30	Option P204
SM 52-AR-60	Option P205
SM70-22	Option P206

SM35-45 **without** Power Sink Option The output voltage is out of control when the output current is **negative**

Upper trace: output voltage Lower trace: output current (current switching from +20 A to –20 A at Vo=6 V)

t: Schulz Electronic GmbH Dr. Rudolf-Eberle-Straße 2 D-7653k Bader-Baden Fon + 497223.9636.0 Fax + 497223.9636.0 Fax + 497223.9636.0 vertrieb@schulz-electronic.de www.schulz-electronic.de

Your contact:

Power Sink Specifications	SM15-100 Option P202	SM35-45 Option P203	SM52-30 Option P204	SM52-AR-60 <i>Option P205</i>	SM70-22 Option P206	
Sink Power Rating max. peak power (electronically limited) max. continuous power (T _{amb} . = 25 °C) max. continuous power (T _{amb} . = 50 °C)	200W 175W 90W					
Max duration Sink Peak Power P _{sink} = 200 W, T _{amb.} = 25 °C	max. t_{on} = 60s, following t_{off} = 400s (for cooling down)					
Duty cycle for use a Peak Power $P_{sink} = 200 \text{ W}, T_{amb.} = 25 \text{ °C}$ $P_{sink} <= 200 \text{ W}, t_{on} <= 20s$	$t_{on} \le 60s / t_{off} \ge 10s$ average power <= 175W					
$ t_{on} = time, power dissipation is > 0 W t_{off} = time, power dissipation is 0 W P_{av} = P_{peak} * t_{on} / (t_{off} + t_{on}) $						
Max Sink Current	Limited at	Limited at	Limited at	Limited at	Limited at	
(V ₀ >= 2 V and P <= 200 W)	40 A	40 A	30 A	40 A	30 A	
Protection	Electronic Power Limit limits the current. The temperature of the power sink is					
	fan controlled, and the circuit shuts down in case of thermal overload.					
Recovery time / Deviation						
V_o = 6 V, I_o : +40 A \rightarrow –15 A recovery within 100 mV / deviation:	di/dt=–1.7A/µs 300µs / 0.20 V	di/dt=–1.7A/µs 500µs / 0.45 V	-	di/dt=–1.7A/µs 700µs / 0.50 V	-	
V_o = 15 V, I_o : +25 A \rightarrow –8 A recovery within 100 mV / deviation:	di/dt=–1.6A/µs 500µs / 0.15 V	di/dt=–1.6A/µs 600µs / 0.40 V	di/dt=–1.6A/µs 640µs / 0.70 V	di/dt=–1.3A/µs 900µs / 0.45 V	-	
V_o = 35 V, $I_o:$ +20 A \rightarrow –3 A recovery within 100 mV / deviation:	-	di/dt=–1.3A/µs 1.10ms / 0.35 V	di/dt=–1.3A/µs 800µs / 0.60 V	di/dt=–0.83 A/µs 1.30ms / 0.35 V	di/dt=–1.3A/µs 800µs / 0.70 V	
V_o = 52 V, $I_o:$ +10 A \rightarrow –2 A recovery within 100 mV / deviation:	-	-	di/dt=–0.7A/µs 800µs / 0.60 V	di/dt=–0.6 A/µs 1.90ms / 0.35 V	di/dt=–0.6 A/µs 1.00ms / 0.70 V	
V_o = 70 V, $I_o:$ +10 A \rightarrow –1 A recovery within 1 V / deviation:	-	-	-	-	di/dt=–0.6 A/µs 1.20ms / 0.50 V	
(load current switches from positive to negative)	note: values are typical	note: values are typical	note: values are typical	note: values are typical	note: values are typical	
Programming Down Speed						
Fall time at no load (90 – 10%) Fall time at no load <i>without Power Sink</i>	$(15 \rightarrow 0 \text{ V})$ 8ms 2s	(35 → 0 V) 18ms 5.5s	(52 → 0 V) 10ms 4s	(26/52 → 0 V) 10ms / 45ms 4s / 7.5s	(70 → 0 V) 18ms 5.5s	
Unit with Hi Speed Programming Option Fall time at no load (90 – 10%) Fall time at no load <i>without Power Sink</i>	P202 + P211 320µs 60ms	P203 + P212 570μs 200ms	P204 + P212 650μs 270ms	P205 + P213 550μs / 1.2ms 170ms / 550ms	P206 + P214 1.0ms 550ms	
Parallel and Series operation Refer to power sink manual for details and restrictions.	Using multiple units in parallel operation, only one unit can have a power sink. Using multiple units in series operation, all units must have a power sink.					

Notes:

The maximum sink current at higher voltages will not be the maximum specified current due to the power limit. For example, at 30V, the max sink current will be 6.7 A (30 V x 6.7 A = 200 W = max power).
A higher sink current than the maximum current will cause the output voltage to rise.

fast discharge of output capacitors by Power Sink circuit

